Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.108
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428465

RESUMO

Previous studies have demonstrated that tetramethylpyrazine (TMP) can enhance the recovery of motor function in spinal cord injury (SCI) rats. However, the underlying mechanism involved in this therapeutic effect remains to be elucidated. We conducted RNA sequencing with a network pharmacology strategy to predict the targets and mechanism of TMP for SCI. The modified Allen's weight-drop method was used to construct an SCI rat model. The results indicated that the nuclear transfer factor-κB (NF-κB) pathway was identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and an inflammatory response was identified through the Gene Ontology (GO) enrichment analysis. Tumor necrosis factor (TNF) was identified as a crucial target. Western blotting revealed that TMP decreased the protein expression of TNF superfamily receptor 1 (TNFR1), inhibitor κB-α (IκB-α), and NF-κB p65 in spinal cord tissues. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) demonstrated that TMP inhibited TNF-α, interleukin-1ß (IL-1ß), reactive oxygen species (ROS), and malondialdehyde (MDA) expression and enhanced superoxide dismutase (SOD) expression. Histopathological observation and behavior assessments showed that TMP improved morphology and motor function. In conclusion, TMP inhibits inflammatory response and oxidative stress, thereby exerting a neuroprotective effect that may be related to the regulation of the TNFR1/IκB-α/NF-κB p65 signaling pathway.


Assuntos
NF-kappa B , Pirazinas , Traumatismos da Medula Espinal , Animais , Ratos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Pirazinas/farmacologia , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Int J Biol Macromol ; 262(Pt 1): 130031, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331072

RESUMO

Plutella xylostella is an important cruciferous crop pest with a serious resistance to multiple insecticides, a novel natural compound, 2,3-dimethyl-6-(1-hydroxy)-pyrazine were isolated, that showed significant repellent activity against P. xylostella with olfactory system as a potential target. Eight odorant-binding proteins (OBPs) were determined as candidate target genes using RT-qPCR (Quantitative reverse transcription PCR), most of them were clustered with OBPs from Spodoptera frugiperda. Fluorescence competitive binding assays showed that PxylPBP2 (Pheromone binding protein) and PxylOBP3 had Ki values of 7.13 ± 0.41 µM and 9.56 ± 0.35 µM, indicating a high binding affinity to the pyrazine. Moreover, the binding style between these two OBPs and the pyrazine was determined as a hydrophobic interaction by using molecular docking. The binding between PxylPBP2 and the pyrazine was found to be more stable, and the carbon atoms of C-2 and C-3 in this pyrazine showed potential optimization characteristics. Both PxylPBP2 and PxylOBP3 were highly expressed in the antennae of both sexes. These results can be used to design and develop novel green pesticides with the pyrazine as the active or lead compound to reduce the utilization of chemical pesticides and postpone development of resistance.


Assuntos
Mariposas , Praguicidas , Receptores Odorantes , Feminino , Animais , Masculino , Simulação de Acoplamento Molecular , Odorantes , Pirazinas/farmacologia , Spodoptera/metabolismo , Praguicidas/metabolismo , Proteínas de Insetos/metabolismo , Receptores Odorantes/química , Mariposas/genética
3.
Mol Biol Rep ; 51(1): 159, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252346

RESUMO

BACKGROUND: Due to the global increase in aging populations and changes in modern lifestyles, the prevalence of neurodegenerative diseases, cerebrovascular disorders, neuropsychiatrcic conditions, and related ailments is rising, placing an increasing burden on the global public health system. MATERIALS AND METHODS: All studies on tetramethylpyrazine (TMP) and its derivatives were obtained from reputable sources such as PubMed, Elsevier, Library Genesis, and Google Scholar. Comprehensive data on TMP and its derivatives was meticulously compiled. RESULTS: This comprehensive analysis explains the neuroprotective effects demonstrated by TMP and its derivatives in diseases of the central nervous system. These compounds exert their influence on various targets and signaling pathways, playing crucial roles in the development of various central nervous system diseases. Their multifaceted mechanisms include inhibiting oxidative damage, inflammation, cell apoptosis, calcium overload, glutamate excitotoxicity, and acetylcholinesterase activity. CONCLUSION: This review provides a brief summary of the most recent advancements in research on TMP and its derivatives in the context of central nervous system diseases. It involves synthesizing analogs of TMP and evaluating their effectiveness in models of central nervous system diseases. The ultimate goal is to facilitate the practical application of TMP and its derivatives in the future treatment of central nervous system diseases.


Assuntos
Doenças do Sistema Nervoso Central , Neuroproteção , Humanos , Acetilcolinesterase , Doenças do Sistema Nervoso Central/tratamento farmacológico , Pirazinas/farmacologia , Pirazinas/uso terapêutico
4.
Bioorg Med Chem Lett ; 99: 129617, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199328

RESUMO

We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.


Assuntos
Benzoatos , Pirazinas , Relação Estrutura-Atividade , Pirazinas/farmacologia , Antivirais/farmacologia
5.
J Biol Chem ; 300(1): 105524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043795

RESUMO

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined. We used pharmacological Piezo1 activation to quantify Piezo1-mediated [Ca2+]i influx and single-channel activity separately in PCs and ICs of freshly isolated collecting ducts with fluorescence imaging and electrophysiological tools. We also employed a variety of systemic treatments to examine their consequences on Piezo1 function in PCs and ICs. Piezo1 selective agonists, Yoda-1 or Jedi-2, induced a significantly greater Ca2+ influx in PCs than in ICs. Using patch clamp analysis, we recorded a Yoda-1-activated nonselective channel with 18.6 ± 0.7 pS conductance on both apical and basolateral membranes. Piezo1 activity in PCs but not ICs was stimulated by short-term diuresis (injections of furosemide) and reduced by antidiuresis (water restriction for 24 h). However, prolonged stimulation of flow by high K+ diet decreased Yoda-1-dependent Ca2+ influx without changes in Piezo1 levels. Water supplementation with NH4Cl to induce metabolic acidosis stimulated Piezo1 activity in ICs but not in PCs. Overall, our results demonstrate functional Piezo1 expression in collecting duct PCs (more) and ICs (less) on both apical and basolateral sides. We also show that acute changes in fluid flow regulate Piezo1-mediated [Ca2+]i influx in PCs, whereas channel activity in ICs responds to systemic acid-base stimuli.


Assuntos
Cálcio , Canais Iônicos , Túbulos Renais Coletores , Membrana Celular , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Pirazinas/farmacologia , Tiadiazóis/farmacologia , Água/metabolismo , Canais Iônicos/agonistas , Canais Iônicos/metabolismo , Animais , Camundongos , Cálcio/metabolismo
6.
Pest Manag Sci ; 80(2): 426-432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37714819

RESUMO

BACKGROUND: Booklice Liposcelis bostrychophila are frequently found almost everywhere, including private houses and cleanrooms of factories and institutes. They often cause serious hygienic as well as agricultural problems, but a useful trap has not been developed so far. Therefore, an effective way to monitor and capture booklice is required. RESULTS: We here identified a new attractant, 2,3,5,6-tetramethylpyrazine (TMP), which efficiently captured booklice in combination with UV light. When booklice placed at both right and left edges of an assay tray were exposed to light stimulus from the center, test insects gathered at the center. The attraction was stronger with shorter wavelengths than longer ones: 365-nm ultraviolet (UV) light showed the strongest attraction of four tested light wavelengths. We found that cocoa powder attracted booklice weakly but significantly under total darkness. Furthermore, the cocoa smell was confirmed to enhance the attraction to light at all tested wavelengths irrespective of the difference between two brands of cocoa powders. Gas chromatography-mass spectrometry indicated that both cocoa products contain TMP as a major odor compound. Exposure of booklice to TMP significantly enhanced the attraction to UV light: the combined use with TMP almost doubled the attraction compared to the light only. By contrast, TMP homologs, pyrazine and dimethylpyrazines, showed strong repellent activities under UV light exposure. CONCLUSION: TMP enhanced the UV light attraction for booklice while pyrazine and dimethylpyrazines diminished it. Use of these attractant and repellent pyrazine derivatives together with UV light would enable us to develop a practical new way to monitor and capture booklice. © 2023 Society of Chemical Industry.


Assuntos
Repelentes de Insetos , Raios Ultravioleta , Animais , Insetos , Pirazinas/farmacologia , Repelentes de Insetos/farmacologia
7.
Eur J Pharmacol ; 964: 176267, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38072038

RESUMO

OBJECTIVE: The inflammatory response is acknowledged as a crucial pathological aspect of spinal cord injury (SCI). Tetramethylpyrazine (TMP) has been demonstrated to possess neuroprotective properties within the central nervous system via its anti-inflammatory mechanisms. This study aims to investigate the molecular mechanism by which TMP alleviates SCI from an anti-inflammatory standpoint. METHODS: The SCI model was established using the MASCIS impactor device. The Basso-Beattie-Bresnahan (BBB) locomotor rating scale was utilised to assess rat locomotion. Nissl and Golgi staining were used to observe neuron and dendritic spine morphology, respectively. A transmission electron microscope was used to observe the microcosmic morphology of the axon. ELISA kits were used to measure the concentrations of IL-1ß and IL-18 in the spinal cord. Immunofluorescence staining was used to detect P2X7R+/IBA-1+ cells, and Western blot and RT-qPCR were used to analyze the protein and mRNA expression of P2X7R in the spinal cord. Additionally, Western blot was used to detect NLRP3 and Cleaved-Caspase-1 (p20), the critical proteins in the NLRP3 inflammasome pathway. RESULTS: TMP ameliorated the microcosmic morphology of the axon and had an inhibitory effect on the concentrations of IL-1ß and IL-18 after SCI. Furthermore, TMP inhibited the expression of both P2X7R and critical proteins of the NLRP3 inflammasome pathway on microglia after SCI. The aforementioned effects of TMP exhibit similarities to those of BBG (P2X7R antagonist); however, they can be effectively reversed by BzATP (P2X7R activator). CONCLUSION: TMP alleviated SCI via reducing tissue damage, neuroinflammation, and the expression of P2X7R, NLRP3, IL-1ß, and IL-18.


Assuntos
Anti-Inflamatórios , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Pirazinas , Traumatismos da Medula Espinal , Animais , Ratos , Anti-Inflamatórios/uso terapêutico , Inflamassomos , Interleucina-18 , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Ratos Sprague-Dawley , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
8.
Bioorg Med Chem Lett ; 97: 129547, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944867

RESUMO

The COVID-19 caused by SARS-CoV-2 has led to a global pandemic that continues to impact societies and economies worldwide. The main protease (Mpro) plays a crucial role in SARS-CoV-2 replication and is an attractive target for anti-SARS-CoV-2 drug discovery. Herein, we report a series of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as non-peptidomimetic inhibitors targeting SARS-CoV-2 Mpro through structure-based virtual screening and biological evaluation. Further similarity search and structure-activity relationship study led to the identification of compound M56-S2 with the enzymatic IC50 value of 4.0 µM. Moreover, the molecular simulation and predicted ADMET properties, indicated that non-peptidomimetic inhibitor M56-S2 might serve as a useful starting point for the further discovery of highly potent inhibitors targeting SARS-CoV-2 Mpro.


Assuntos
COVID-19 , Pirazinas , SARS-CoV-2 , Humanos , Antivirais/farmacologia , COVID-19/prevenção & controle , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais , Pirazinas/química , Pirazinas/farmacologia , Tratamento Farmacológico da COVID-19
9.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067606

RESUMO

Infectious diseases pose a major challenge to human health, and there is an urgent need to develop new antimicrobial agents with excellent antibacterial activity. A series of novel triazolo[4,3-a]pyrazine derivatives were synthesized and their structures were characterized using various techniques, such as melting point, 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. All the synthesized compounds were evaluated for in vitro antibacterial activity using the microbroth dilution method. Among all the tested compounds, some showed moderate to good antibacterial activities against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains. In particular, compound 2e exhibited superior antibacterial activities (MICs: 32 µg/mL against Staphylococcus aureus and 16 µg/mL against Escherichia coli), which was comparable to the first-line antibacterial agent ampicillin. In addition, the structure-activity relationship of the triazolo[4,3-a]pyrazine derivatives was preliminarily investigated.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Pirazinas/farmacologia , Antibacterianos/química , Escherichia coli , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Estrutura Molecular
10.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959859

RESUMO

Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.


Assuntos
Produtos Biológicos , Pirazinas , Pirazinas/farmacologia , Pirazinas/química , Química Farmacêutica , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia
11.
Int J Nanomedicine ; 18: 6469-6486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026537

RESUMO

Background: The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose: To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods: NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results: In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation: This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion: NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Compostos de Organossilício , Pirazinas , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos , Pulmão/patologia , MicroRNAs/farmacologia , Compostos de Organossilício/farmacologia , Pirazinas/farmacologia
12.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894702

RESUMO

As a new approach, pyrrolo[1,2-a]pyrazines were synthesized through the cyclization of 2-formylpyrrole-based enaminones in the presence of ammonium acetate. The enaminones were prepared with a straightforward method, reacting the corresponding alkyl 2-(2-formyl-1H-pyrrol-1-yl)acetates, 2-(2-formyl-1H-pyrrol-1-yl)acetonitrile, and 2-(2-formyl-1H-pyrrol-1-yl)acetophenones with DMFDMA. Analogous enaminones elaborated from alkyl (E)-3-(1H-pyrrol-2-yl)acrylates were treated with a Lewis acid to afford indolizines. The antifungal activity of the series of substituted pyrroles, pyrrole-based enaminones, pyrrolo[1,2-a]pyrazines, and indolizines was evaluated on six Candida spp., including two multidrug-resistant ones. Compared to the reference drugs, most test compounds produced a more robust antifungal effect. Docking analysis suggests that the inhibition of yeast growth was probably mediated by the interaction of the compounds with the catalytic site of HMGR of the Candida species.


Assuntos
Antifúngicos , Indolizinas , Antifúngicos/farmacologia , Pirróis/farmacologia , Indolizinas/farmacologia , Pirazinas/farmacologia , Testes de Sensibilidade Microbiana , Candida
13.
Cancer Res ; 83(19): 3174-3175, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779426

RESUMO

The ongoing therapeutic revolution in multiple myeloma care can be traced to the turn of the millennium with the unanticipated discovery in 1999 that the cereblon binding small molecule thalidomide had profound clinical effectiveness and, simultaneously, the emergence of a new class of targeted therapies inhibiting the proteasome, both of which ultimately target ubiquitinated protein degradation. These contemporaneous discoveries forever changed the landscape of multiple myeloma care, substantially extending survival. Foreshadowing this seismic change, Nobel Prize winning work on the proteasome ubiquitin pathway had stimulated the development of highly specific proteasome inhibitor small molecules, particularly PS-341 (later named bortezomib). An abundance of the proteasome in hematologic malignancies had been recognized and thus PS-341 was logically being explored in relevant preclinical models. Concurrent with phase I trials, which were soon to prove the significant clinical relevance of preclinical models, the laboratory of Dr. Kenneth Anderson and colleagues at Dana-Farber, in partnership with Dr. Julian Adams and scientists at ProScript (later Millennium Pharmaceuticals) first demonstrated that the proteasome inhibitor PS-341 inhibited growth, induced apoptosis, and overcame drug resistance in human multiple myeloma cells. This landmark paper in Cancer Research set the stage for a paradigm shift in how multiple myeloma was managed across all stages of the disease, which changed the lives of patients worldwide. See related article by Hideshima and colleagues, Cancer Res 2001;61:3071-6.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Bortezomib , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo de Endopeptidases do Proteassoma , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Pirazinas/farmacologia
14.
Dalton Trans ; 52(37): 13097-13109, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37664893

RESUMO

The development of novel anticancer drugs with antiproliferative and antimetastatic activities is of great importance in the pharmaceutical field. Herein, a series of ligustrazine (LSZ) platinum(IV) complexes with chemotherapeutic and immunotherapeutic effects were designed, prepared and evaluated as antitumor agents for the first time. Complex 4 with potent antitumor activities both in vitro and in vivo was screened out as a candidate. Notably, it displays significantly more effective anti-metastatic activities than the platinum(II) drugs cisplatin and oxaliplatin. Mechanism detection discloses that it causes serious DNA damage and increases the expression of γ-H2AX and P53. Then, the apoptosis of tumor cells is promoted by activating the mitochondrial apoptotic pathway Bcl-2/Bax/caspase-3 and causing autophagy via modulating LC3-I/II and P62 expression. Furthermore, the immune therapeutic responses are significantly elevated by blocking HIF-1α, ERK 1/2 and COX-2 pathways to reduce PD-L1 expression, and further increasing CD3+ and CD8+ T cells to elevate T cell immunity in tumors. Tumor metastasis is blocked by the synergistic functions of DNA damage, hypoxia modulation and immune activation.


Assuntos
Linfócitos T CD8-Positivos , Platina , Platina/farmacologia , Pirazinas/farmacologia , Imunoterapia
15.
Elife ; 122023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37753907

RESUMO

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.


Assuntos
Antineoplásicos , Microscopia , Bortezomib/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Pirazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose
16.
BMC Pulm Med ; 23(1): 286, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550659

RESUMO

PURPOSE: Endotoxin-induced acute lung injury (ALI) is a severe disease caused by an imbalanced host response to infection. It is necessary to explore novel mechanisms for the treatment of endotoxin-induced ALI. In endotoxin-induced ALI, tetramethylpyrazine (TMP) provides protection through anti-inflammatory, anti-apoptosis, and anti-pyroptosis effects. However, the mechanism of action of TMP in endotoxin-induced ALI remains unclear. Here, we aimed to determine whether TMP can protect the lungs by inhibiting Golgi stress via the Nrf2/HO-1 pathway. METHODS AND RESULTS: Using lipopolysaccharide (LPS)-stimulated C57BL/6J mice and MLE12 alveolar epithelial cells, we observed that TMP pretreatment attenuated endotoxin-induced ALI. LPS + TMP group showed lesser lung pathological damage and a lower rate of apoptotic lung cells than LPS group. Moreover, LPS + TMP group also showed decreased levels of inflammatory factors and oxidative stress damage than LPS group (P < 0.05). Additionally, LPS + TMP group presented reduced Golgi stress by increasing the Golgi matrix protein 130 (GM130), Golgi apparatus Ca2+/Mn2+ ATPases (ATP2C1), and Golgin97 expression while decreasing the Golgi phosphoprotein 3 (GOLPH3) expression than LPS group (P < 0.05). Furthermore, TMP pretreatment promoted Nrf2 and HO-1 expression (P < 0.05). Nrf2-knockout mice or Nrf2 siRNA-transfected MLE12 cells were pretreated with TMP to explore how the Nrf2/HO-1 pathway affected TMP-mediated Golgi stress in endotoxin-induced ALI models. We observed that Nrf2 gene silencing partially reversed the alleviating effect of Golgi stress and the pulmonary protective effect of TMP. CONCLUSION: Our findings showed that TMP therapy reduced endotoxin-induced ALI by suppressing Golgi stress via the Nrf2/HO-1 signaling pathway in vivo and in vitro.


Assuntos
Lesão Pulmonar Aguda , Pirazinas , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Antioxidantes/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Heme Oxigenase-1/genética , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transdução de Sinais , Pirazinas/farmacologia
18.
Eur J Med Chem ; 258: 115544, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300915

RESUMO

Heterocycles are common in the structure of drugs used clinically to deal with diseases. Such drugs usually contain nitrogen, oxygen and sulfur, which possess electron-accepting capacity and can form hydrogen bonds. These properties often bring enhanced target binding ability to these compounds when compared to alkanes. Pyrazine is a nitrogen-containing six-membered heterocyclic ring and many of its derivatives are identified as bioactive molecules. We review here the most active pyrazine compounds in terms of their structure, activity in vitro and in vivo (mainly antitumor activity) and the reported mechanisms of action. References have been downloaded through Web of Science, PubMed, Science Direct, Google Scholar and SciFinder Scholar. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. We found that compounds in which a pyrazine ring was fused into other heterocycles especially pyrrole or imidazole were the highly studied pyrazine derivatives, whose antineoplastic activity had been widely investigated. To the best of our knowledge, this is the first review of pyrazine derivatives and their bioactivity, especially their antitumor activity. This review should be useful for those engaged in development of medications based on heterocyclic compounds especially those based on pyrazine.


Assuntos
Antineoplásicos , Compostos Heterocíclicos , Pirazinas/farmacologia , Pirazinas/química , Compostos Heterocíclicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Nitrogênio
19.
Anticancer Agents Med Chem ; 23(15): 1783-1793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151057

RESUMO

INTRODUCTION: Breast cancer is the most frequent malignancy in women with more than one in ten new cancer diagnoses each year. Synthetic products are a key source for the identification of new anticancer medicines and drug leads. OBJECTIVES: Imidazopyrazine is a highly favored skeleton for the design of new anticancer drugs. In silico designed derivatives were screened using computer aided drug design techniques and validated using MTT assay. METHODS: A template-based methodology was used in the current work to create novel Imidazopyrazine derivatives, targeting the NPY1R protein. Molecular docking, Diffusion docking, MD simulation, MM-GBSA and meta-dynamics techniques were followed. MTT assay was performed to validate the activity of principal compound. RESULTS: A docking score of -6.660 and MMGBSA value of -108.008 (+/-) 9.14 kcal/mol was obtained from the investigations conducted. In addition, molecular dynamics simulation was carried out for 500 ns, yielding a stable RMSD and value of 5.6 Å, thus providing insights on the stability of the protein conformation on interaction with the principal compound. Furthermore, the in vivo validation studies conducted via MTT assay showed an IC50 value of 73.45 (+/-) 0.45 µg /mL. CONCLUSION: The research has produced encouraging findings and can be applied as a model for precise enumerations in the future. It also encourages the study of novel synthetic compounds with potential anti-cancer properties.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Imidazóis/química , Imidazóis/farmacologia , Pirazinas/química , Pirazinas/farmacologia
20.
Org Lett ; 25(19): 3502-3507, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37162500

RESUMO

Crosiellidines are intriguing pyrazine-alkylguanidine metabolites isolated from the minor actinomycete genus Crossiella. Their structures present an unprecedented 2-methoxy-3,5,6-trialkyl pyrazine scaffold and uncommon guanidine prenylations, including an exotic O-prenylated N-hydroxyguanidine moiety. The novel substitution pattern of the 2-methoxypyrazine core inaugurates a new class of naturally occurring pyrazine compounds, the biosynthetic implications of which are discussed herein. Isotopic feeding and genome analysis allowed us to propose a biosynthetic pathway from arginine. The crossiellidines exhibited remarkable, broad-spectrum antibacterial activity.


Assuntos
Actinobacteria , Actinomycetales , Pirazinas/farmacologia , Actinomycetales/química , Actinobacteria/química , Antibacterianos/química , Vias Biossintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...